

TECHNICAL MANUAL

SERIAL COMMUNICATIONS OPTION CARD

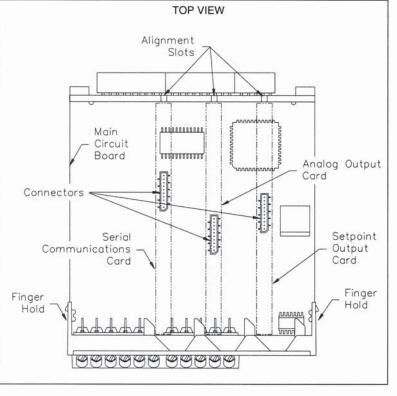
DESCRIPTION

This bulletin serves as a guide for the installation, configuration and operation of the RS232 and RS485 bus cards for the 2000 family of meters.

The 2000 can be fitted with up to three different option cards. The slot bays of the option cards are dedicated to a particular card function.

The option card functions are: serial communications, analog output and setpoint output. Only one card from each function category can be installed into the meter.

INSTALLING AN OPTION CARD



Caution: The option and main circuit cards contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, handle the cards by the edges only. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter AND load circuits before accessing the unit.

- Remove the main assembly from the rear of the case. Squeeze the finger holds on the rear cover, or use a small screwdriver to depress the side latches to release it from the case. It is not necessary to separate the rear cover from the main circuit card.
- Locate the option card connector for the type of option card to be installed. Hold the unit by the rear connector, not the display board, when installing an option card.
- 3. Install the option card by aligning the option card connector with the slot bay in the rear cover. The cards are keyed by position with different main board connector locations. Be sure the connector is fully engaged and the tab on the option card rests in the alignment slot on the display board.
- Slide the assembly back into the case. Be sure the rear cover latches fully into the case.
- 5. Apply the option card label to the bottom side of the meter. Do not cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly. Apply the label to the area designated by the large case label.

SPECIFICATIONS

RS485 Communication Card

Type: RS485 multi-point balanced interface

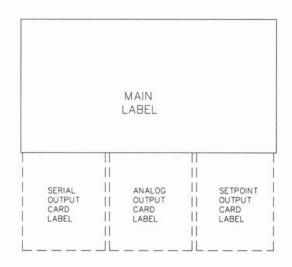
Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Not Isolated from all other commons.

Baud Rate: 300 to 19.2k

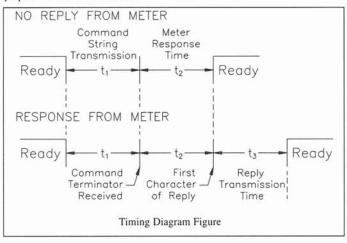
Data Format: 7/8 bits; odd, even, or no parity **Bus Address**: 0 to 99, max 32 meters per line

Transmit Delay: Selectable; 2 - 50 msec or 50 - 100 msec


RS232 Communication Card Type: RS232 half duplex

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Not Isolated from all other commons.


Baud Rate: 300 to 19.2k

Data Format: 7/8 bits; odd, even or no parity

Command Response Time

The meter can only receive data or transmit data at any one time (half-duplex operation). The meter ignores commands while transmitting data, but instead uses RXD as a busy signal (See Busy). When sending commands and data to the meter, timing restrictions are imposed when sending another command thereafter. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t_1 , the computer program prints or writes the string to the com port, thus initiating a transmission. During t_1 , the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of t_1 is dependent on the number of characters and baud rate of the channel.

$$t_1 = (10 * # of characters) / baud rate$$

At the start of time interval t_2 , the meter starts the interpretation of the command and when complete, performs the command function. This time interval t_2 varies from 2 msec to 50 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t_2 is controlled by the use of the command terminating character. The standard command line terminating character is '*'. This terminating character results in a response time window of 50 msec minimum and 100 msec maximum. This allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with '\$' results in a response time window (t_2) of 2 msec minimum and 50 msec maximum. The faster response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval t_3 , the meter responds with the first character of the reply. As with t_1 , the time duration of t_3 is dependent on the number of characters and baud rate of the channel. $t_3 = (10 * \# \text{ of characters}) / \text{baud rate}$. At the end of t_3 , the meter is ready to receive the next command.

The maximum serial throughput of the meter is limited to the sum of the times t_1 , t_2 and t_3 .

Sending Commands and Data

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a the command terminator character * or \$.

Command Chart

Command	Description	Notes
N	Node Address Specifier	Address a specific meter. Must be followed by one or two digit node address. Not required when node address = 0.
Т	Transmit Value (read)	Read a register from the meter. Must be followed by register ID character.
٧	Value change (write)	Write to register of the meter. Must be followed by register ID character and numeric data.
R	Reset	Reset a register or output. Must be followed by register ID character
Р	Block Print Request (read)	Initiates a block print output. Registers are defined in programming.

Command String Construction

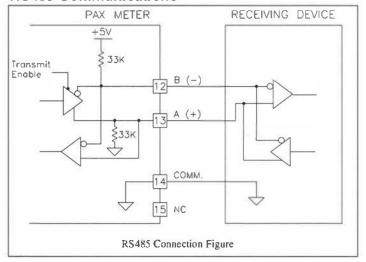
The command string must be constructed in a specific sequence. The meter does not respond with an error message to illegal commands. The following procedure details construction of a command string:

- The first 2 or 3 characters consist of the Node Address Specifier (N) followed by a 1 or 2 character node address number. The node address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
- After the optional address specifier, the next character is the command character.
- The next character is the register ID. This identifies the register that the command affects. The P command does not require a register ID character.
- If constructing a value change command (writing data), the numeric data is sent next.
- 5. All command strings must be terminated with the string termination characters * or \$. The meter does not begin processing the command string until this character is received. See timing diagram figure for differences of * and \$ terminating characters.

Register Identification Chart

ID	Value	Abbv.	Applicable	Commands/Comments
Α	Input	INP	T, P	
В	Total	тот	T, P, R	(Reset command resets total to zero)
С	Max Input	MAX	T, P, R	(Reset command resets MAX to current reading)
D	Min Input	MIN	T, P, R	(Reset command resets MIN to current reading)
Е	Setpoint 1	SP1	T, P, V, R	(Reset command resets the setpoint output)
F	Setpoint 2	SP2	T, P, V, R	(Reset command resets the setpoint output)
G	Setpoint 3	SP3	T, P, V, R	(Reset command resets the setpoint output)
н	Setpoint 4	SP4	T, P, V, R	(Reset command resets the setpoint output)
1	Analog Output Register	AOR	T, V	(Applies to manual mode)
J	Control Status Register	CSR	T, V	

Command String Examples:


- Node address = 17, Write 350 to Setpoint 1, response delay of 2 msec min String: N17VE350\$
- Node address = 5, Read Input value, response delay of 50 msec min String: N5TA*
- Node address = 0, Reset Setpoint 4 output, response delay of 50 msec min String: RH*

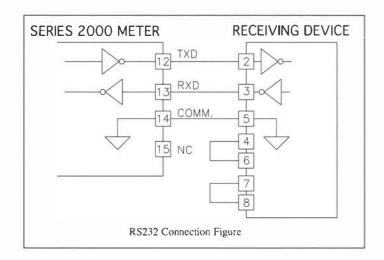
Sending Numeric Data

Numeric data sent to the meter must be limited to 5 digits (-19,999 to 99,999). If more than 5 digits are sent, the meter accepts the last 5. Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (IE: The meter's scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5 In this case, write a value = 25.0).

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.

RS485 Communications

The RS485 communication standard allows the connection of up to 32 devices on a single pair of wires, distances up to 4,000 ft, and data rates as high as 10M baud (the meter is limited to 19.2k baud). The same pair of wires is used to both transmit and receive data. An RS485 bus is therefore always half-duplex, that is, data cannot be received and transmitted simultaneously.


If more than one slave device is connected to the interface, a unique node address must be assigned to each device. The meter then requires each command to be prefaced by an address specified (N). If only one device is connected, the address specifying command may be ignored.

RS232 Communications

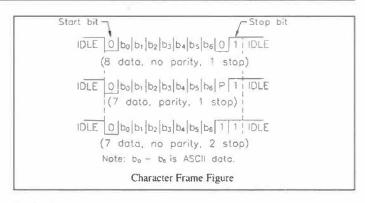
RS232 is intended to allow only 2 devices to communicate to each other. One device is categorized as Data Computer Equipment (DCE) and the other device as Data Terminal Equipment (DTE). A DTE transmits data on the Transmitted Data (TXD) line and receives data on the Received Data (RD) line. This means that a DCE receives data on the TXD line and transmits data on the RD line. This meter emulates a DTE. If the other device connected to the meter also emulates a DTE, the TXD and RXD lines must be interchanged for communications to take place. This is known as a null modern connection. Most printers emulate a DCE device while most computers emulate a DTE device.

Busy

Some devices cannot accept more than two or three characters in succession without a pause in between. In these cases, if the meter continues to transmit, the characters will overrun the device's buffer and data will be lost. In order to circumvent this, the meter employs a busy function. As the meter begins to transmit data, the RXD line (RS232) is monitored to determine if the receiving device is "busy". The receiving device asserts that it is busy by setting the RXD line into an "on" condition (logic 0). The meter then suspends transmission until the RXD line is released by the receiving device.

Communication Format

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character.


The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

LOGIC	INTERFACE STATE	RS232*	RS485*
1	mark (idle)	TXD,RXD; -3 to -15 V	a-b < -200 mV
0	space (active)	TXD,RXD; +3 to +15 V	a-b > +200 mV

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is "framed" with a beginning start bit, an optional error detection parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.

Parity bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The 2000 meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit.

Receiving Data

Data is transmitted by the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. In this case, the response contains only the numeric field. The meter response mode is established in programming.

Full Field Transmission

Byte Description

1, 2 2 byte Node Address field [00-99]

3 Space

4-6 3 byte Register ID field

7-18 12 byte data field; 10 bytes for number, one byte for sign, one byte for decimal point

19 <CR>

20 <LF>

21 Space*

22 <CR>*

23 <LF>*

* These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned =0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register ID.

The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative value have a leading minus sign. The data field is right justified with leading spaces.

The end of the response string is terminated with a carriage return <CR> and <LF>. When block print is finished, an extra <PS><CR> <LF> is used to provide separation between the blocks.

Abbreviated Transmission

Byte Description

1-12 12 byte data field, 10 bytes for number, one byte for sign,

one byte for decimal point

13 <CR>

14 <LF>

15 Space

16 <CR>*

17 <LF>*

* These characters only appear in the last line of a block print.

The abbreviated response suppresses the node address and register ID characters, leaving only the numeric part of the response.

Meter Response Examples:

1. Node address = 17, full field response, Input = 875

17 INP 875 <CR><LF>

2. Node address = 0, full field response, Setpoint 2 = -250.5

SP2 -250.5<CR><LF>

 Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print

250<CR><LF><SP><CR><LF>

MANUAL MODE

Manual mode provides the user with direct control over the meter's outputs via the serial bus. In this mode, the meter's normal control of the outputs are suspended. Manual control of the outputs is achieved by writing to the Control Status Register (CSR) and the Analog Output Register (AOR).

Manual mode is invoked by setting the manual mode bit of the CSR. The outputs can then be directly controlled by writing data to the output registers. Cycle power to the meter or clear the manual mode bit of the CSR to return to normal operation.

Control Status Register (CSR)

The Control Status Register is used to both directly control the meter's outputs (setpoints and analog output), and interrogate the state of the setpoint outputs. The register is bit mapped with each bit position within the register assigned to a particular control function. The control function are invoked by writing to each bit position. The bit position definitions are:

bit 0: Setpoint 1 Output Status

0 = output off

1 = output on

bit 1: Setpoint 2 Output Status

0 = output off

1 = output on

bit 2: Setpoint 3 Output Status

0 = output off

1 = output on

bit 3: Setpoint 4 Output Status

0 = output off

1 = output on

bit 4: Manual Mode

0 = automatic mode

1 = manual mode

bit 5: Always 0

bit 6: Sensor Status (PAXT only)

0 = sensor normal

1 = sensor fail

bit 7: Always 0

Note: Avoid writing values <0AH> (LF), <0DH> (CR), <24H> (\$) and <2EH> (*) to the CSR. These values are interpreted by the meter as end of command control codes and will prematurely end the write operation.

Although the register is bit mapped, ASCII codes can be used to set or reset the bit positions. This facilitates use with terminals. Writing a "1" to bit 4 of CSR selects manual mode. In this mode, the setpoint outputs are defined by the values written to the bits b0, b1, b2, b3; and the analog output is defined by the value written to the AOR. Internal control of these outputs is then overridden.

In automatic mode, the setpoint outputs can only be reset off. Writing to the setpoint output bits of the CSR has the same effect as a Reset command (R). The contents of the CSR may be read to interrogate the state of the setpoint outputs and to check the status of the temperature sensor (special versions only).

Examples:

1. Set manual mode, turn all setpoints off, set analog output to low end of range

 $(ASCII\ 0 = 0110000)$

VJ<10H>* or VJ0*

VIO* Set AOR to 0

Turn SP1,SP3 outputs on and SP2,SP4 outputs off
VJ<15>* or VJ5* (ASCII 5 = 0110101)

3. Select Automatic mode

VJ < 00 > * or VJ@* (ASCII @ = 1000000)

Analog Output Register (AOR)

The analog output register controls the analog output of the meter. The manual mode must first be engaged by setting bit 4 of the Control Status Register. The range of values of this register is 0 to 4095, which corresponds to 0 mA, 0 V and 20 mA, 10 V; respectively. The table lists correspondence of the output signal with the register value.

Danistas Value	Output	Signal*
Register Value	I (mA)	V (V)
0	0.000	0.000
1	0.005	0.0025
2047	10.000	5.000
4094	19.995	9.9975
4095	20.000	10.000

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (20 mA or 10 V).

Writing to this register while the meter is in the manual mode causes the output signal to update immediately. While in the automatic mode, this register may be written to, but the output will not update until the meter is placed in manual mode.

Examples:

- 1. Set output to full scale VI4095*
- 2. Set output to zero scale VIO*

SERIAL COMMUNICATIONS PORT PROGRAMMING [7-5[L]

Serial Communications Baud Rate

PUNG

300 1200 600 2400

4800 19200 9600

Set the baud rate to match that of other serial communications equipment. Normally, the baud rate is set to the highest value that all of the serial communications equipment is capable of transmitting.

Serial Communications Word Length

dAtA 7

Select either 7 or 8 bit data word lengths. Set the word length to match that of other serial communication equipment. Since the meter receives and transmits 7-bit ASCII encoded data, 7 bit word length is sufficient to request and receive data from the meter.

Serial Communications Parity

PAr NO Odd EVEN

Set the parity bit to match that of the other serial communications equipment used. The meter ignores the parity when receiving data, and sets the parity bit for outgoing data.

If no parity is selected with 7-bit word length the meter transmits and receives data with 2 stop bits. (IE. 10 bit frame with mark parity)

Serial Communications Node Address

Addr 0 to 99

Enter the serial node address. With a single unit on a bus, an address is not needed and a value of zero can be used (RS232 applications). Otherwise, with multiple bussed units, a unique address number must be assigned to each meter. The node address applies specifically to RS485 applications.

Serial Communications Abbreviated Output

Abv YES NO

Select abbreviated transmissions (numeric only) or full field transmission. When the data from the meter is sent directly to a terminal for display, the extra characters that are sent help identify the nature of the meter parameter displayed. In this case, select NO. When the data from the meter goes to a computer, it may be desirable to suppress the node address and mnemonic when transmitting. In this case, set this parameter to yEs.

Serial Communications Print Options

OPt YES NO

yEs- Enters the sub-menu to select those meter parameters to appear in the block print. For each parameter in the sub-menu select yEs for the parameter to appear with the block print, and ND to disable the parameter.

Input	INE	yE\$NO
Max and min	hILC	yEsN0
Total	tot	yEsN0
Setpoint values	spN	yEsN0

*Either two setpoint values or four setpoint values are transmitted. This is dependent on whether a dual or quad setpoint card is installed. If no setpoint card is installed, this parameter does not appear.

NO - Skips the sub-menu for selecting programmed output transmission parameters

Indicates Program Mode Alternating Display

APPENDIX - ASCII Table of Printable Characters

HEX	DECIMAL	
20H	32	<sp></sp>
21	33	!
22	34	"
23	35	#
24	36	\$
25	37	%
26	38	&
27	39	,
28	40	(
29	41)
2A	42	•
2B	43	+
2C	44	
2D	45	68
2E	46	
2F	47	1
30	48	0
31	49	1
32	50	2
33	51	3
34	52	4
35	53	5
36	54	6
37	55	7

HEX	DECIMAL	
38H	56	8
39	57	9
ЗА	58	:
3B	59	- ;
3С	60	<
3D	61	=
3E	62	>
3F	63	?
40	64	@
41	65	Α
42	66	В
43	67	С
44	68	D
45	69	Е
46	70	F
47	71	G
48	72	Н
49	73	- 1
4A	74	J
4B	75	K
4C	76	L
4D	77	М
4E	78	N
4F	79	0

HEX	DECIMAL	
50H	80	Р
51	81	Q
52	82	R
53	83	S
54	84	Т
55	85	U
56	86	V
57	87	W
58	88	Х
59	89	Υ
5A	90	Z
5B	91	[
5C	92	1
5D	93]
5E	94	٨
5F	95	_
60	96	
61	97	а
62	98	b
63	99	С
64	100	d
65	101	е
66	102	f
67	103	g

HEX	DECIMAL	
68H	104	h
69	105	i
6A	106	j
6B	107	k
6C	108	I
6D	109	m
6E	110	n
6F	111	0
70	112	р
71	113	q
72	114	r
73	115	s
74	116	t
75	117	u
76	118	v
77	119	w
78	120	х
79	121	у
7A	122	Z
7B	123	{
7C	124	1
7D	125	}
7E	126	~
7F	127	

NOTES

NOTES

Corporate Headquarters

1010 West Bagley Road Berea, Ohio 44017 Ph: 440.243.0888 Fax: 440.243.3472

E-mail: noshok@noshok.com Web: www.noshok.com

